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Abstract
The real-time demand for system security leads to the detection
rules becoming an integral part of the intrusion detection life-cycle.
Rule-based detection often identifies malicious logs based on the
predefined grammar logic, requiring experts with deep domain
knowledge for rule generation. Therefore, automation of rule gen-
eration can result in significant time savings and ease the burden of
rule-related tasks on security engineers. In this paper, we propose
RulePilot, which mimics human expertise via LLM-based agent for
addressing rule-related challenges like rule creation or conversion.
Using RulePilot, the security analysts do not need to write down
the rules following the grammar, instead, they can just provide
the annotations such as the natural-language-based descriptions
of a rule, our RulePilot can automatically generate the detection
rules without more intervention. RulePilot is equipped with the
intermediate representation (IR), which abstracts the complexity of
config rules into structured, standardized formats, allowing LLMs
to focus on generation rules in a more manageable and consistent
way. We present a comprehensive evaluation of RulePilot in terms
of textual similarity and execution success abilities, showcasing
RulePilot can generate high-fidelity rules, outperforming the base-
line models by up to 107.4% in textual similarity to ground truths
and achieving better detection accuracy in real-world execution
tests. We perform a case study from our industry collaborators,
showcasing that RulePilot significantly help junior analysts/general
users in the rule creation process.

CCS Concepts
• Security and privacy→ Software and application security;

Keywords
LLM-based agents, Rule-based Intrusion Detection, Incident Re-
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1 Introduction
Security threats are increasingly a growing concern for both users
and industrial organizations. The infamous SolarWinds attack [4]
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disrupted supply chains and compromised sensitive data, highlight-
ing the critical need for robust security controls. A recent trend
in intrusion detection systems relies on the neural-network-based
provenance graphs, which have demonstrated notable strength in
detection performance. However, they face the problems of high
computational resource cost and long detection latency, hindering
their wide practical deployment. In practice, in security detection
systems, rules [11] are widely used to identify malicious activi-
ties and trigger alerts, such as detection rules executed on SIEM
(Security Information and Event Management) platforms, which
offer a lightweight and efficient solution to these challenges while
maintaining great explanation abilities.

However, the high cost of rule creation and the long duration
of rule maintenance are still problems faced by security organi-
zations. Particularly, these detection rules are typically written
manually by junior and senior security experts, a process that is
time-consuming, labor-intensive and requires extensive domain
knowledge. Furthermore, as attack techniques continue to evolve,
rules need constant updates, increasing maintenance costs. Tools
like MITRE ATT&CK [14] provide a common framework to de-
scribe attack techniques, but translating the structured techniques
into specific rule configurations requires huge manual efforts. More-
over, modern security organizations can sometimes use different
SIEM platforms such as Splunk [39], Microsoft Sentinel [27], or IBM
QRadar [16], which have their own rule languages. Rules written
for one platform cannot directly work on another, creating a cross-
platform compatibility problem when an organization migrates
an SIEM system. The automation of rule generation and conver-
sion can result in significant time savings and ease the burden of
rule-related tasks on security engineers.

The recent breakthrough of Large Language Models (LLMs), par-
ticularly in code generation [15, 21, 42, 47], text-to-SQL [37] and
binary malware analysis [48, 51] with generative models like the
GPT series, open new opportunities for automated security rule
generation and conversion. Unfortunately, compared to code/SQL
generation, the challenge of generating security configurations
lies in the nuanced and dynamic nature inherent in SIEM-specific
rules. Code/SQL often follows well-defined syntax and logical struc-
tures, while rule configurations are highly domain-specific, system-
dependent, and lack standardized formats. The rule configurations
require a deep understanding of systems’ behaviors and environ-
ment, precise tuning of parameters, dependencies, and iterative
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corrections, which can vary significantly across SIEM systems. In-
formally speaking, a junior programmer can write redundant but
correct code, however, he/she may struggle to figure out a correct
SIEM-specific rule constraint. Several works [35, 44] explored the
generation of simple detection YAML rules like Sigma, falling short
in addressing the more complex and functional challenges specific
to SIEM systems due to the following challenges.

• Non-standardized format: The rule configurations are highly
domain-specific and lack standardized representations. A stan-
dalone LLM typically lacks precise knowledge and cannot simulate
human thoughts to break down the complex rule generation into
smaller pipelines. To address this, we design an intermediate repre-
sentation (IR) that can serve as a bridge between high-level require-
ments and low-level configuration file details. An IR abstracts the
complexity of rule configurations into a structured, standardized
format that captures essential parameters, and relationships, allow-
ing LLMs to focus on generating configurations in a manageable
and consistent way. The designed IR should be capable of han-
dling the SIEM-specific cases like nested operators, vendor-specific
syntax, reducing ambiguity and improving accuracy.
• Iterative correction: The initially generated rules might be
semantically and syntactically incorrect, or logically-nonaligned.
To resolve this, we introduce the reflection functions, identifying
the potential mistakes upon each step, and refining the identified
weakness to optimize the semantic and syntactic gaps. Beyond that,
our reflection supports logical consistency, rule-field coverage, and
the live execution viability, enabling the robust and scalable rule
generation.
• System dependence: A sound rule should be able to interact
with the live SIEM systems while existing LLMs fall short into
autonomously and independently use tools like external SIEM ven-
dor’s grammar checks, feedback from live SIEM vendor’s APIs, or
rule-testing frameworks. We integrate the live Splunk [39] SIEM
with LLMs, facilitating validation, optimization, and adaptation of
configurations across systems and environments.

In this paper, we propose RulePilot, which is an LLM-powered
agent facilitating a series of practical scenarios on rule-based detec-
tion autonomously: 1) Using RulePilot, security analysts do not need
to write rules following a specific grammar. Instead, they can simply
provide annotations, such as rule descriptions in natural language.
With this input, our RulePilot can automatically generate detection
rules without requiring any further intervention. Usually, the de-
scriptions can be divided into preconditions like a rule annotations
or the attack types provided by experts. We tailor our workflow to
Splunk SIEM grammars. 2) Furthermore, when security analysts
update or migrate their SIEM systems, they need the conversion
function between the different SIEM vendors. RulePilot supports
the conversion between Splunk Processing Language (SPL) and
Microsoft Sentinel Kusto Query Language (KQL).

We evaluate RulePilot upon objective similarity for textual align-
ment with ground truth rules [40] and semantic evaluator for assess-
ing logical and functional correctness. Results show that RulePilot
consistently improves both textual similarity and semantic accu-
racy, outperforming standalone LLMs by up to 107.4% in textual
similarity.We conduct a field study by executing the generated rules

in a realistic Splunk environment, evaluating their execution suc-
cess in detecting suspicious activities. The results demonstrate that
RulePilot successfully captures the majority of suspicious logs by up
to 1.00 F1 score, validating its practical applicability in real-world
threat detection scenarios. Our evaluation yields intriguing insights
into the capabilities and limitations of LLMs in rule generation. We
discover that LLMs show proficiency in understanding high-level
threat descriptions and generating corresponding rules, however,
we find that LLMs have difficulty in maintaining field mappings
and condition handling, which necessitates human verification for
checking the final results, ensuring the generated rule functions
correctly. We perform a case study from our industry partners, and
show that RulePilot significantly facilitates the rule generation of
junior analysts/general users in terms of time used, rule quality
including the syntax validity and logical alignment.

We summarize our contributions as follows.
• We propose a novel workflow RulePilot to address SIEM-specific
rule generation and conversion challenges. Our workflow in-
cludes chain-of-thought reasoning, immediate representation,
and reflection. Our designed components go beyond general IR
and reflectionmechanisms, effectively covering the SIEM-specific
functions and edge cases such as nested operators and logical
consistency, making the process more robust and scalable.
• We tailor our RulePilot to Splunk SIEM system, analyzing the
grammars and environments specific to Splunk, seamlessly inte-
grating with Splunk for intelligent and efficient rule execution.
• We conduct a comprehensive evaluation of RulePilot, employ-
ing models like GPT-4o, DeepSeek-V3, and LlaMa-3. RulePilot
outperforms the baseline models by up to 107.4% in textual simi-
larity to ground truths and achieves better detection accuracy in
real-world Splunk execution tests.

With its structured reasoning and automation capabilities, RulePilot
is poised to become an essential tool for security analysts in rule-
relevant tasks. We release all the used datasets in the link 1 and
open-source all code in 2.

2 Background and Motivation
2.1 Rule-based Anomaly Detection
Modern anomaly detection systems like Security Information and
Event Management (SIEM) [11, 45] typically rely on detection rules
to identify potential intrusions, which are widely used due to their
lightweight overhead and great explanation abilities. The widely-
used rules can be typically classified into the general Sigma and
the SIEM-specific rules. Sigma is a generic and open signature for-
mat for SIEM systems, allowing for flexible rules in YAML format
that can be translated into multiple SIEM vendors. Despite their
compatibility with any SIEM vendor, Sigma rules primarily rely on
single-pattern matching using regular expressions. They lack sup-
port for complex queries, such as SQL-style aggregations, and are
unable to execute calculations including statistical analysis or time-
window-based computations in SIEM vendors. These limitations
often result in failures to detect sophisticated attacks involving
a series of events or cycles. In contrast, SIEM-specific rules can

1https://sites.google.com/view/rulepilot/dataset
2https://github.com/LLM4SOC-Topic/RulePilot

https://sites.google.com/view/rulepilot/dataset
https://github.com/LLM4SOC-Topic/RulePilot


RulePilot : An LLM-Powered Agent for Security Rule Generation and Conversion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

bridge this gap by incorporating customized conditions with condi-
tional statements and leveraging advanced functions. Consider a
scenario where an attacker attempts to exfiltrate sensitive data by
downloading multiple ".zip" files from a server. A typical Sigma rule
detects this behavior through pattern matching in log fields, such
as identifying ".zip" file requests in URI queries, which relies solely
on string-based detection, lacking contextual awareness and deeper
behavioral analysis. As a comparison, take the widely-used SIEM
vendor Splunk [39] as an example, a Splunk-specific rule [40, 41]
can implement the detection with more advanced functionality
shown in Listing 1.
index=web_logs

| search uri_query ="*. zip"

| stats count BY src_ip , uri_query , user_agent

| where count > 5 AND user_agent !=" Mozilla /5.0 (friendly -

bot)"

| eval message =" Potential data exfiltration detected: " .

src_ip . " downloading " . count . " ZIP files"

| table _time , src_ip , uri_query , user_agent , count ,

message

Listing 1: A splunk rule for detection of ZIP file downloads.

This Splunk rule can track activity over time, filter out events us-
ing the conditions (such as removing known bots), and generate
meaningful alerts, making it far more effective in identifying attack
behaviors. We commit to generating such SIEM-specific rules using
our RulePilot. Among the SIEM vendors, we target Splunk vendors
as Splunk [39, 40] is widely used by organizations in practice in
literature and our professional experience. Additionally, we con-
sider the problem of rule conversion when Splunk SIEM sometimes
should be migrated into another SIEM like Microsoft Sentinel [27].

2.2 Motivation Scenarios
As shown in Figure 1, existing methods require analysts to write
rules manually with an attack description. There are two types of
analysts: senior analysts and junior analysts. A senior analyst has
rich experience and years of writing rules. They can complete the
task in a short time, and the rules are of good quality. However,
the cost is very high due to training and salaries. A junior analyst
may lack experience. They take a long time to write rules, and the
results may not be good. This motivates the use of a RulePilot based
on LLMs. RulePilot assists in writing rules, saving time, reducing
costs, and achieving better results, only with the help of junior
analysts for somewhat condition handling. Companies often en-
counter system migration challenges, such as adapting validated
rules to a new SIEM platform. RulePilot addresses this by offering a
rule conversion function, enabling seamless rule adaptation across
different SIEM systems (e.g., from Splunk to Microsoft Sentinel).
This ensures that rules generated by RulePilot remain reusable, min-
imizing manual effort and streamlining future migrations. Note
that RulePilot is designed to generate rules autonomously with-
out human intervention. We acknowledge that human verification
remains essential for final deployment. In practice, human opera-
tors validate the generated rules to ensure their correctness and
effectiveness. The junior operator here is expected to be familiar
with the SIEM environments. Compared to manual rule creation,
the human role here focuses on validation, eliminating the need to
master complex rule grammars.

High Cost
Good Results

Low Cost
Poor Results

Low Cost
Good Results

Senior Analyst Junior Analyst Junior Analyst RulePilot

Requirement

Short
Time

Short
Time

Long
Time

Rule 
Convert

Figure 1: Motivation scenario [6, 18]: By combining with
RulePilot, junior analysts can generate concise detection
rules and conversions, significantly reducing the workload
of senior experts.

2.3 LLM-Based Agents
An agent can be broadly defined as an autonomous entity that per-
ceives its environment, makes decisions based on its goals, and takes
actions to affect its surroundings[33]. These features are inspired
by human cognition and allow agents to behave consistently and ef-
fectively in dynamic, complex environments [46]. Researchers have
been exploring machine learning techniques to automate aspects
of rule generation in cybersecurity. For example, Raff et al. [30]
introduced AutoYara, a tool that utilizes biclustering algorithms
to automatically generate YARA rules for malware detection. In
another study, Saxe [34] developed YaraML, a machine learning-
based toolkit designed to automate the creation of YARA rules.
However, they always focus on generic YARA rules, while ignoring
the customized SIEM-specific rules. Applying LLM-based agents
to generate complex detection rules, such as Splunk-specific rules,
faces several significant challenges: 1) deep domain knowledge re-
quirement. This involves meticulously analyzing rule structures
step by step and crafting modular designs to guide the LLM in mak-
ing precise plans and reasoned decisions. and 2) workflow design
and live SIEM integration. Developing an agent workflow capable
of handling multi-step reasoning and integrating the SIEM systems
is equally demanding.

3 RulePilot: Methodology
3.1 Workflow Design
Overview. As shown in Figure 2, RulePilot consists of three key
components: Chain of Thought (CoT) reasoning, Intermediate Rep-
resentation (IR), and Reflection & Iterative Optimization. Given an
initial rule generation request 𝑅, RulePilot applies Least-to-Most
Prompting (LMP) [52] to incrementally decompose rule generation
into a structured sequence of reasoning steps 𝑃 . Each step produces
an intermediate representation that encodes its core logic, and once
all steps are processed, these representations are aggregated to
form an initial rule 𝑅𝑟𝑎𝑤 . The rule then undergoes reflection and
iterative optimization, where weaknesses are identified and refined
through reasoning adjustments, syntax validation, and execution-
based feedback. This structured analyze-generate-reflect-optimize
cycle ensures that the final rule 𝑅𝑓 𝑖𝑛𝑎𝑙 is both logically sound and
execution-efficient.
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The following analytic detects 
the execution of suspicious 
processes on systems identified 
as web servers. It leverages the 
Splunk data model 
"Endpoint.Processes" to search 
for specific process names such 
as "whoami", "ping", "iptables", 
"wget", "service", and "curl". This 
activity is significant because 
these processes are often used 
by attackers for reconnaissance, 
persistence, or data exfiltration. If 
confirmed malicious, this could 
lead to data theft, deployment of 
additional malware, or even 
ransomware attacks. Immediate 
investigation is required to 
determine the legitimacy of the 
activity and mitigate potential 
threats.
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of processes like 
whoami, ping, iptables, 
wget, service, and curl 
on systems identified as 
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| tstats summariesonly=true count from 
datamodel=Endpoint.Processes 
where Processes.dest_category="web_server" AND 
Processes.process IN ("whoami", "ping", "iptables", 
"wget", "service", "curl") by Processes.process_name, 
Processes.dest, Processes.user 
| rename Processes.process_name as process, 
Processes.dest as host, Processes.user as user 
| extend alert="Suspicious process executed"
| table firstTime, lastTime, host, user, process, count

...

Tools

Semantic 
Refine

�풓��

Feedback

FILTER 
| PARAMS {process_name IN ["whoami", "ping", "iptables", 
"wget", "service", "curl"], system_role = "web_server"} 
| MODULES {threat_relevance = "High"}

Decision 
Generation

HTTP 400 Bad Request -- 
Unknown search command 
'extend'.

Grammar
Check

{"firstTime": "2025-03-12T15:45:32Z",
"lastTime": "2025-03-12T15:48:10Z",
"host": "webserver-02.company.com",
"user": "nginx", "process": "wget", "count": 3,
"callerIpAddress": "203.0.113.45", "userAgent": 
"Mozilla/5.0 (Linux; Android 10; Mobile) 
AppleWebKit/537.36 (KHTML, like Gecko) 
Chrome/99.0.4758.102 Safari/537.36"}

SIEM API

CoT Stage IR Stage Reflection Stage
Figure 2: Overview of RulePilot, where RulePilot incorporates the Chain-of-Thought (CoT), Intermediate Representation (IR),
and Reflection components. Given the NLP-based input requirements, RulePilot generates SIEM-specific rules that can be
directly executed in the SIEM to detect malicious logs and trigger alerts (i.e., the malicious log).

Chain of Thought Reasoning. The predefined CoT reasoning
steps that RulePilot can select and execute are below:
1○ Interpreting the security objectives, 2○ Identifying data/log sources,
3○ Defining initial filters/conditions, 4○ Extracting relevant fields, 5○
Performing data aggregation, 6○ Optimizing the rule

Given a rule generation request 𝑅, RulePilot first decomposes it
into a sequence of structured reasoning steps 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}.
The decomposition follows these two stages: (1) Step Selection:
The model selects relevant steps from the set of predefined steps
above, which cover the comprehensive aspects of rule generation.
(2) Stepwise Execution: The model answers each subproblem in se-
quence, using the output of 𝑝𝑖 as contextual input for 𝑝𝑖+1, ensuring
a gradual and structured rule refinement process.
Intermediate Representation. A well-designed IR abstraction
provides a clear and structured way to express rule intention. SIEM-
specific rule logic is inherently complex, requiring structured filter-
ing, aggregation, and anomaly detection across various log sources.
The syntax of SIEM rule languages, such as Splunk Processing Lan-
guage (SPL) andMicrosoft Sentinel Kusto Query Language (KQL), is
highly complex, making direct generation challenging. By incorpo-
rating an intermediate representation, RulePilot enables the model
to prioritize semantic logic over syntactic details, streamlining the
reasoning process and improving rule generation accuracy.

Specifically, each reasoning step corresponds to one or more
IR statements, with each IR statement representing a single pro-
cessing unit (pipe) in the rule. Given an input rule request de-
scription, the CoT process generates a sequence of reasoning steps
𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}, where each step 𝑝𝑖 maps to an IR component 𝐼𝑖 .
Formally, this can be represented as:

𝐼 = {𝐼1, 𝐼2, ..., 𝐼𝑛} =
𝑛⋃
𝑖=1
T (𝑜𝑝𝑖 )

whereT is the transformation function thatmaps each intermediate
analysis output 𝑜𝑝𝑖 to an IR 𝐼𝑖 . The final IR set 𝐼 is the union of all
individual IR components generated through this mapping process.

Once the full set of IR components 𝐼 has been constructed, the
initial raw rule 𝑅𝑟𝑎𝑤 is generated by integrating both the semantic

insights from 𝑜𝑝𝑖 and the structured transformations from 𝐼𝑖 .

𝑅𝑟𝑎𝑤 = C(𝑂, 𝐼 )
where C is the rule construction function that synthesizes the
intermediate analyses 𝑂 and the IR 𝐼 into an executable rule.
Reflection and Iterative Optimization.The optimization process
incorporates a dynamic iterative mechanism, starting with an auto-
mated reflection function Φ(𝑅𝑟𝑎𝑤), which analyzes the generated
rule to identify logical inconsistencies, knowledge gaps, or syn-
tax errors. After each iteration, the RulePilot autonomously selects
and invokes appropriate tools to address deficiencies. If the system
detects unresolved issues, it triggers another refinement cycle, iter-
ating until the rule is logically coherent, semantically accurate, and
syntactically valid.

𝑆 = {𝑠𝑙𝑐 , 𝑠𝑠𝑐 , 𝑠𝑒𝑣} = Φ(𝑅𝑟𝑎𝑤)
where 𝑆 represents the set of identified issues:
• Logical Consistency (𝑠𝑙𝑐 ): Verifies whether all filtering, aggrega-
tion, and correlation steps align with the intended detection logic.
• Syntax Correctness (𝑠𝑠𝑐 ): Confirms that the rule adheres to the
syntax requirements of the target SIEM system, such as Splunk SPL
or Microsoft KQL.
• Execution Validity (𝑠𝑒𝑣 ): Ensures that the rule is structured for ef-
ficient query execution without excessive computational overhead.

3.2 Detailed Construction
Here, we show how to tailor our workflow to the Splunk SIEM,
generating SPL rules.
Chain of Thought Reasoning.We keep the core CoT workflow
unchanged, and incorporate additional Splunk-adapted design el-
ements to improve log source selection, syntax correctness, and
execution efficiency. A detailed example of the CoT prompt struc-
ture is shown in Table 1. We open-source the prompts for LLMs
corresponding to each function of these processes on the web-
site [32]. Our prompt strategy is motivated by empirical tuning and
expert insights, effectively mimicking expert-level expertise into
the agent’s behavior. We used components of Identity, Instructions,
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Examples, and Context because they reflect how SIEM experts re-
trieve historical cases during manual rule construction. We also
guide with DOs and DON’Ts, helping the model understand both
what to do and what to avoid, based on OpenAI’s official guide 3.

Table 1: Structure of the Prompt Template

CoT Prompt Template

You are a security analyst at a cybersecurity company, special-
izing in writing and optimizing Splunk rules (SPL) for threat
detection.
Task: <Iterate through the tasks in the Task List>
Instruction: <Specific Guidance such as possible keywords>
Example Input: <Provide an example rule description>
Example Output: <Corresponding SPL detection rule>

Task List

1○Map security objectives to Splunk event sources
2○ Determine necessary log fields
3○ Define efficient filtering conditions
4○ Apply field extractions and transformations
5○ Perform aggregations and anomaly detection
6○ Optimize query execution and validate syntax

Intermediate Representation.We create the IR structure tailored
to Splunk SPL, whose structure follows a three-part format below.

<𝐾𝐸𝑌𝑊𝑂𝑅𝐷> |𝑃𝐴𝑅𝐴𝑀𝑆{𝑘𝑖 = 𝑣𝑖 }|𝑀𝑂𝐷𝑈𝐿𝐸𝑆{𝑚 𝑗 }
where:
• 𝐾𝐸𝑌𝑊𝑂𝑅𝐷 represents the core function of each rule step, in-
cluding filtering logs, extracting fields, performing aggregations,
or applying transformations. These IR keywords are summarized
based on an extensive analysis of open-source Splunk rule sets and
proprietary rules from industry collaborators. Each 𝐾𝐸𝑌𝑊𝑂𝑅𝐷

corresponds to one or more SPL commands. Table 3 presents the
distribution and frequency of the 15 predefined IR keywords in SPL,
along with their associated SPL commands.
• 𝑃𝐴𝑅𝐴𝑀𝑆 serves as the core configuration of the rule, defin-
ing mandatory elements such as log sources, filtering conditions,
and time constraints. These parameters ensure that the rule is
executed within the correct context. For example, specifying in-
dex="auth_logs" source="WinEventLog:Security" ensures that the
rule retrieves logs from relevant data sources, preventing inefficien-
cies caused by querying unrelated logs. Similarly, including a time
constraint like earliest=-15m latest=now helps narrow the search
scope, significantly improving query speed.
• 𝑀𝑂𝐷𝑈𝐿𝐸𝑆 introduces functional annotations that enrich the
interpretation of a rule, improving its flexibility, readability, and
adaptability during the transformation into an executable query.
Unlike 𝑃𝐴𝑅𝐴𝑀𝑆 , which strictly define the necessary elements for
rule execution, 𝑀𝑂𝐷𝑈𝐿𝐸𝑆 describe the intended logic and ana-
lytical operations that should be applied to the retrieved data. For
example, a modulemay specify "track user behavior across sessions"
or "identify repeated failed login attempts", helping to capture the
intent behind the rule rather than just its execution details.
3https://platform.openai.com/docs/guides/text?api-mode=chat

Table 2 shows an example on how our IR corresponds to an exe-
cutable Splunk query, where the IR abstraction defines the detection
logic in a structured and interpretable way, with its SPL counterpart
represents the actual execution in Splunk. The 𝐹𝐼𝐿𝑇𝐸𝑅 specifies
where to retrieve logs, 𝑃𝐴𝑅𝐴𝑀𝑆 ensures correct data scoping and
𝑀𝑂𝐷𝑈𝐿𝐸𝑆 encapsulates the detection intent, guiding how the rule
should process events.

Table 2: Example for IR Statement to a Splunk Rule Pipe

IR Example

FILTER
| PARAMS
{index="auth_logs", source="WinEventLog:Security", earliest=-
30m}
| MODULES
{"Aggregate login attempts", "Detect brute force login attempts"}

Corresponding Splunk SPL Pipe

index="auth_logs" source="WinEventLog:Security" earliest=-
30m
| stats count by src_ip
| where count >10

To address SIEM-specific edge cases, we design the IR with ex-
plicit support. For nested operators, which are commonly used in
filter and transformation logic, we incorporate two strategies: For
simple constructs (e.g., eval, match, where), we allow controlled
nesting within a single IR statement; for more complex expres-
sions involving multi-layer joins or condition chaining, we enforce
decomposition into multiple atomic IR statements to preserve in-
terpretability and reduce error propagation during transformation.

To accommodate SIEM-specific syntax variations of multiple
SIEMs, our IR incorporates a pluggable keyword dictionary archi-
tecture. For each target SIEM system (e.g., Splunk SPL, Microsoft
KQL), we can curate and maintain a dedicated dictionary of IR
keywords and associated translation templates derived from em-
pirical rule corpora and vendor documentation. This allows the
IR-to-query compiler to flexibly adapt the output semantics and
syntactic form of different SIEMs.

Table 3: IR keywords along with their SPL Commands.
Keyword SPL Command Frequency

FILTER search, where, eval, match 3129
EXTRACT rex, spath, extract, kv 2063
AGGREGATE stats, timechart, eventstats, tstats 1872
OUTPUT table, fields,outputlookup, return 1609
TRANSFORM eval, replace, convert, fillnull 1015
RENAME rename 802
LOOKUP lookup,inputlookup,outputlookup 315
BUCKET bin, bucket 91
JOIN join, appendcols, transaction 83
FILL fillnull, coalesce, replace 75
APPEND append, union, appendpipe 46
SORT sort, reverse 38
DEDUP dedup, uniq 28
APPLY apply, fit 24
DEBUG noop, logtrace, dump, sendemail 17



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hongtai Wang* , Ming Xu*# , Yanpei Guo, Weili Han, Hoon Wei Lim, and Jin Song Dong

Reflection and Iterative Optimization. Different from LLM-
based self-debugging [13, 43] that typically relies on prompting-
based re-generation conditioned on observed errors or exceptions,
our reflection adopts a scoring-based multi-layered mechanism.
This enables the system to iteratively reconstruct faulty rule com-
ponents at both the IR and final SPL levels, addressing deeper is-
sues such as semantic gaps, abstraction mismatches, logical in-
consistencies, field coverage, and execution viability, rather than
merely rewriting surface text. Our reflection mechanism integrates
semantic-level diagnostics, real execution feedback via selective
modules, and a scoring-based evaluation to further analyze the
logical consistency, field coverage, and execution viability using
a scoring-based evaluation (𝑠𝑙𝑐 , 𝑠𝑠𝑐 , 𝑠𝑒𝑣 ), and selectively invokes
CoT-based refinement and SIEM-integrated validation routines.

Specifically, RulePilot first performs syntax validation using
Splunklib’s dry-run mode [38], which allows the system to check
for syntax errors without executing the query. Second, RulePilot
dynamically invokes a set of predefined optimization modules to
address identified logical/structural inconsistencies. If Φ(𝑅𝑟𝑎𝑤) de-
tects any of {𝑠𝑙𝑐 , 𝑠𝑠𝑐 , 𝑠𝑒𝑣}, indicating logical inconsistencies, struc-
tural violations, or execution failures, the system applies targeted
refinements through two steps:
(1) CoT-Based Refinement Modules (𝑀𝐶𝑜𝑇 ): The system revisits
earlier CoT reasoning steps and regenerates the affected IR state-
ments, refining the rule logic and improving structural coherence.
This produces an updated intermediate rule 𝑅′𝑟𝑎𝑤 , defined as:

𝑅′𝑟𝑎𝑤 = 𝑀𝐶𝑜𝑇 (𝑅𝑟𝑎𝑤 , 𝑠𝑙𝑐 )
(2) Rule Refinement Modules (𝑀𝑆𝑝𝑙𝑢𝑛𝑘 ): RulePilot integrates with
live Splunk’s validation and execution environment. The rule is exe-
cuted via Splunk’s API, retrieving real log data. If the results deviate
from the intended detection objective, RulePilot iteratively refines
the SPL by adjusting filters, modifying conditions, or restructuring
query logic based on execution feedback.

𝑅𝑓 𝑖𝑛𝑎𝑙 = 𝑀𝑆𝑝𝑙𝑢𝑛𝑘 (𝑅′𝑟𝑎𝑤 , 𝑆)

3.3 Rule Conversion
To ensure the interoperability and adaptability of RulePilot across
different SIEM platforms, we implement a Rule Conversion Module
that translates rules from one SIEM vendor (e.g., Splunk SPL) into
another (e.g., Microsoft KQL). This conversion process is designed
to preserve the logical intent of the original rule while adapting it
to the syntax, function names, and query structures of the target
SIEM.

As shown in Algorithm 1, the Rule Conversion follows a struc-
tured multi-step approach, beginning by segmenting the input rule
into individual pipes, and then breaking down a complex task into
smaller, more manageable units. However, this breakdown may
cause a loss of contextual dependencies between pipes, so an LLM-
based function extraction module is introduced to retrieve each
pipe’s purpose and variable mappings, ensuring coherence in later
stages. Once the semantic information is extracted, the system con-
verts each pipe sequentially, allowing previously processed pipes
to provide contextual support.

To further improve accuracy, we incorporate a Retrieval-Augmented
Generation (RAG) [19] mechanism that dynamically maps key-
words and functions from the source SIEM to their equivalents in

the target SIEM. The RAG knowledge base is bootstrapped from
Microsoft’s official migration documentation [7], which provides
detailed mappings between Splunk detection rules and their KQL
counterparts. From this corpus, we extract every <SPL command,
KQL operator, usage snippet> triple, normalise aliases (e.g., rex
↔ extract) and build a key-value mapping database that aligns
functionally equivalent operations across the two SIEMs. Each SPL
command string and its descriptive context are embedded with the
text-embedding-ada-002 [3]. During conversion, every pipe is
first tokenised into <verb, args, fields> tuples. The verb plus sur-
rounding comments are embedded on-the-fly, and a top-𝑘 (default
𝑘 = 10) vector search is issued. Candidates with cosine similarity
above a threshold (i.e., 0.82 used) are retained and re-ranked with a
BM25 [31] lexical score to favour exact-string matches. If the SPL
command has a high-confidence match, the retrieved KQL oper-
ator (and an example usage) is attached to the LLM prompt as a
structured “conversion hint”. This retrieval-augmented approach
ensures that the LLM does not solely rely on pre-trained knowl-
edge but is instead guided by vendor-specific best practices and
real-world rule patterns.

Algorithm 1 Rule Conversion from SIEM Vendor A to B
Require: Rule 𝑅𝐴 from SIEM Vendor A, Target SIEM Vendor B
Ensure: Converted rule 𝑅𝐵 for SIEM Vendor B
1: Step 1: Pipe Segmentation
2: Split 𝑅𝐴 into a sequence of pipes: 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛 }
3: Step 2: Function Extraction
4: for each pipe 𝑝𝑖 ∈ 𝑃 do
5: (𝑓𝑖 , 𝑖𝑛𝑖 , 𝑜𝑢𝑡𝑖 ) ← ExtractFunctionInfo(𝑝𝑖 )
6: end for
7: Step 3: Context-Aware Pipe Conversion
8: for each pipe 𝑝𝑖 ∈ 𝑃 do
9: 𝑃prior ← GetPriorPipes(𝑝𝑖 , 𝑃 )
10: 𝐾𝑖 ← RetrieveKeyword(𝑝𝑖 ,Vendor A,Vendor B)
11: 𝑝′𝑖 ← ConvertPipe(𝑝𝑖 , 𝑖𝑛𝑖 , 𝑜𝑢𝑡𝑖 , 𝑃prior, 𝐾𝑖 )
12: 𝑃 ′ ← 𝑃 ′ ∪ {𝑝′𝑖 }
13: end for
14: Step 4: Assemble Converted Rule
15: 𝑅𝐵 ← AssembleRule(𝑃 ′ )
16: return 𝑅𝐵

4 Evaluation
In this section, we aim to evaluate the following research questions.
• RQ1-Accuracy: How effective is RulePilot in generating SIEM-
specific detection rules, measured by similarity to official rules and
execution success across SIEM vendors?
• RQ2-Efficiency: What are the latency and resource costs of the
rule generation process?
• RQ3-Ablation Study: Do the specific components in RulePilot
help improve the quality of rule generation?
• RQ4-Compatibility: Does RulePilot support the conversion be-
tween Splunk SPL and Microsoft KQL?

4.1 Experimental Settings
4.1.1 Implementation Details. We implemented a fully functional
prototype of RulePilot, designed for automated rule generation
and conversion in Splunk SIEM. RulePilot is built upon GPT-4o,
DeepSeek-V3 (671B), and LLaMA-3 (405B), with agent-based or-
chestration implemented using their function-calling capabilities.
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To control generation behavior, we configure all models with a
temperature of 0.3 (balancing determinism and flexibility), top-p
of 0.9 (ensuring controlled diversity), and set a maximum response
length of 512 tokens to prevent excessively long outputs. We use
the Splunk of version 9.3.1, and the trial license for experiments.

4.1.2 Datasets. We evaluate RulePilot using two sources of rules:
Splunk official rules from the Splunk Security Content repos-
itory 4 as the ground truth to evaluate the similarity score, and
the custom rules between Splunk SPL and Microsoft KQL
currently used by our industry collaborator for their security
operations to evaluate the compatibility. The Splunk official rules
we download contain a total of 1,699 samples, organized into five
major categories based on their focus (shown in Table 4), maximiz-
ing coverage across comprehensive and diverse categories, reducing
evaluation bias. The key components of the datasets include the
rule body (SPL) and the corresponding description that explains
the purpose and context of the rule. The original datasets con-
tained macros, which are vendor-specific or environment-specific
variations. The macro abstracts the specific directives, and do not
conform to rule grammars, possibly affecting rule consistency. To
ensure a fair comparison, we replaced all macros with standardized
definitions based on Splunk’s official macro library. For example, a
macro like ’process_cmd’ , should be replaced with its specific
SPL equivalent: Processes.process_name = cmd.exe.

4.1.3 System Log Collection. To evaluate the execution success of
our generated rules, we simulate various atomic attacks [1] pro-
vided by MITRE ATT&CK, including 229,968 system logs from
61 atomic tests, covering 12 tactics in MITRE ATT&CK, covering
broad applicability and reducing evaluation bias. The system logs
were collected using EventViewer in a controlled environment, cap-
turing system, Sysmon, and PowerShell logs on a virtual machine
running Windows 10 (64-bit). Our evaluation focuses primarily on
Windows events due to their widespread use in both enterprises
and consumer marketss [12]. The datasets have their labels based
on our simulation process, open-sourced in [32].

Table 4: Category of our ground-truths, with each item con-
taining the NLP descriptions and associate SPL rules.

Rules-Set Type size Time Frame

Application 125 2024-09-30 – 2024-11-19

Cloud 271 2024-09-30 – 2024-10-31

Endpoint 1187 2024-09-24 – 2024-12-03

Network 44 2024-09-25 – 2024-11-06

Web 72 2024-09-30 – 2024-10-17

4.1.4 Baseline. We compare RulePilot’s performance against that
based upon the standalone LLMs of GPT-4o, DeepSeek-V3 (671B),
and LLaMa-3 (405B), without the structured reasoning and function-
callingmechanisms of RulePilot. For a fair comparison, both baseline
models generate rules using the same prompts as those employed

4https://github.com/splunk/security_content. We primarily use rules from the detec-
tions folder to evaluate the similarity score and reference macro definitions from the
macros folder for completeness.

by RulePilot in its rule generation step, without any additional multi-
step processing, validation, or refinement. We download DeepSeek-
V3 and LLaMa-3 models from Hugging Face [5],[2] To ensure con-
sistency across all models, we use the same model parameters as
those employed by RulePilot.

4.2 Evaluation Metrics
Accuracy. Our accuracy evaluation consists of two complemen-
tary metrics: quantifiable similarity assessment and an LLM-based
evaluator. The first metrics measure the textual similarity between
the generated rules and the ground truth (i.e., the official rules),
creating an objective assessment of structural and lexical alignment.
We adopt three well-established quantifiable metrics below.
• ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [22]
is an NLP metric that compares machine-generated text with ref-
erence text to measure content similarity. A higher ROUGE-k in-
dicates a greater overlap of k-grams between the generated and
ground truth rule. Here, we set k = 1 and include ROUGE-L, cap-
turing the longest common subsequence to reflect structural align-
ment.
• BLEU (Bilingual Evaluation Understudy) [28] is a widely used
precision-oriented NLP metric that evaluates text similarity based
on n-gram overlap. A higher BLEU-k score indicates better align-
ment between the generated and ground truth rule. We use BLEU-4
in our evaluation.
• METEOR (Metric for Evaluation of Translation with Explicit OR-
dering) [9] is an advanced NLP metric that improves upon BLEU
by incorporating stemming, synonym matching, and word order
considerations, making it a more robust metric for comparing vari-
ations in rule expressions.

The quantifiable similarity assessment offers an objective metric
but may yield misleadingly high scores for syntactically similar
yet semantically incorrect rules. To mitigate this, we adopt the
LLM-as-a-judge approach, a scalable and explainable method for
approximating human preferences [20]. We evaluate rule quality
from a semantic perspective, considering six key evaluation dimen-
sions below.
• Logical Consistency (LC). The LLM looks at conditions, operators,
and filters to see if anything is missing or changed.
• Syntax Correctness (SC). The LLM checks for mistakes in the
query and looks for ways to write it better.
• Readability & Maintainability (RM). The LLM checks if the rule
is written in a clear way, without unnecessary complexity.
• Condition Coverage (CC). The LLM ensures no key conditions are
missing or unnecessary constraints are added.
• False Positive & False Negative Risk (FPFNR). The LLM checks
if the rule is too strict (which may miss real threats) or too loose
(which may flag normal activities).
• Execution Efficiency (EE). The LLM analyzes whether the rule
uses complex operations, unnecessary filters, or inefficient queries
that could slow down processing.
We adopt a scoring scheme ranging from 0 to 1 for each evaluation
dimension. Instead of focusing on absolute scores, we emphasize
relative rankings across outputs under the same prompt for evalu-
ating the effectiveness of different methods. To mitigate evaluation
bias, we followed a human-aligned iterative evaluation framework.

https://github.com/splunk/security_content
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An experienced human expert and an LLM were involved in an iter-
ative prompt refinement process to align the evaluation standards.
We define inter-rater agreement as a match in relative preference,
for example, both the human and the LLM giving higher scores
to RulePilot over the corresponding vanilla LLMs (baseline) is con-
sidered consistent, regardless of exact numerical values. Under
this definition, we show the matrix in Figure 3 based on pairwise
preferences, where our inter-rater agreement test reaches a larger
Cohen’s Kappa [17] score of 0.85, indicating strong agreement.

R > B B > R
Human Preference

R 
> 

B
B 

> 
R

LL
M

 P
re

fe
re

nc
e 127 2

7 34

Figure 3: Preference inter-rater alignment between the LLM
and the human evaluator. R refers to RulePilot, and B refers
to Baseline. The “>” indicates that the method was rated
higher in a pairwise comparison. The diagonal entries indi-
cate agreement between the LLM and the human evaluator.

Execution Success.We ingest all collected logs into Splunk, exe-
cute the generated rules as search queries, and verify their accuracy
by comparing retrieved logs against the ground truth from simu-
lated atomic tests. Execution is considered successful if the retrieved
logs match the expected attack-generated logs. We compute pre-
cision, recall, and other metrics to assess rule effectiveness. To
quantify performance, we use 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 ,
and 𝐹1 = 2 · Precision·RecallPrecision+Recall as evaluation metrics.

4.3 Evaluation Results
4.3.1 RQ1-Accuracy. We present our quantifiable similarity assess-
ment in Table 5. Overall, RulePilot consistently outperforms all its
corresponding baseline models across every category. The improve-
ments range from 20.9% to 107.4%, demonstrating that RulePilot
significantly enhances both the syntactic accuracy of the generated
rules. Among the different detection categories, the cloud achieves
the highest overall performance, suggests that cloud-based detec-
tion rules are relatively easier for RulePilot to generate accurately,
possibly due to the structured and well-documented nature of cloud
security rules. In contrast, the web category exhibits the lowest
performance across most metrics. This indicates that web-related
security rules tend to be more complex or diverse, making it harder
for models to capture accurate patterns. Literature [8], [10] also sup-
port this claim that web-related security rules are complex. When
comparing different LLMs, RulePilot achieves its highest perfor-
mance using GPT-4o, compared to and LLaMa-3. This suggests that
GPT-4o is better suited for structured rule-generation tasks, likely
due to its improved reasoning and instruction-following capabili-
ties.

Looking deeply, our experts judge a concrete example of a rule
generated by RulePilot and the GPT-4o baseline model. We present
an expert-reviewed result in Figure 4. This demonstrates a rule
related to AWS CloudTrail login and profile creation monitoring.
We can find that the baselinemodel fails to properly correlate profile

index=aws_cloudtrail sourcetype=\"aws:cloudtrail\" 
(eventName=\"CreateLoginProfile\" OR eventName=\"ConsoleLogin\") 
| stats count by sourceIPAddress, eventName, 
requestParameters.userName, _time 
| where eventName=\"CreateLoginProfile\" AND 
eventName=\"ConsoleLogin\" 
| transaction sourceIPAddress startswith=CreateLoginProfile 
endswith=ConsoleLogin maxspan=5m
| table _time, eventName, userAgent, errorCode, 
requestParameters.userName

index=aws_cloudtrail sourcetype=\"aws:cloudtrail\" 
(eventName=\"CreateLoginProfile\" OR eventName=\"ConsoleLogin\") 
| eval eventType=case(eventName==\"CreateLoginProfile\", "Profile 
Creation\", eventName==\"ConsoleLogin\", "Login Attempt\") 
| stats count by userName, srcIp 
| where count > 1 
| sort _time 
| table _time, userName, srcIp, count

Baseline Model Output

RulePilot Output

Figure 4: Expert-reviewed comparison between rules gen-
erated by RulePilot versus those generated by standalone
GPT-4o.
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Figure 5: Semantic-level evaluation. Radar chart of LLM-
based evaluator: the inner shaded area represents the base-
linemodel’s score, while the outer contour representsRulePi-
lot’s score.

creation and subsequent login attempts, relying only on counting
occurrences per user and IP. While it correctly filters relevant event
types, it lacks a mechanism to determine if a login actually follows
a profile creation within a short window.

Second, to avoid the syntactically similar yet semantically in-
correct evaluation, we show the results of radar chart in Figure 5,
illustrating the results of LLM-based evaluator results. We can find
that RulePilot consistently outperforms all standlone LLMs across
six evaluation dimensions. GPT-4o achieves the highest perfor-
mance across most dimensions, particularly in Syntax Correctness
(SC). In contrast, DeepSeek-V3 and LlaMa-3 show weaker perfor-
mance, especially in Condition Coverage (CC) and False Positive &
False Negative Risk (FPFNR).
Execution Success. To show the execution success of the gener-
ated rules in a SIEM vendor, we show our results in Table 6, where
we find that RulePilot consistently achieves higher precision and
recall across most tactics compared to GPT-4o, demonstrating its
ability to generate executable detection rules in Splunk. Notably,
RulePilot achieves perfect (100%) precision across multiple tactics,
confirming that its generated rules accurately match ground truth
detections without false positives in these cases. However, certain
tactics exhibit lower precision and recall, particularly for Privilege
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Table 5: Syntax-level evaluation. Similarity comparison of the generated rules from RulePilot (RP) and baselines (BL) with
ground truth, including GPT-4o (GPT), DeepSeek-V3-671B (DS), and LLaMa-3-405B (LLaMa).

Category BLEU (↑) ROUGE-1 (↑) ROUGE-L (↑) METEOR (↑)
GPT DS LLaMa GPT DS LLaMa GPT DS LLaMa GPT DS LLaMa

RP BL RP BL RP BL RP BL RP BL RP BL RP BL RP BL RP BL RP BL RP BL RP BL

application (54) 39.1 33.6 43.8 30.2 32.5 31.1 49.2 36.6 42.3 33.9 41.6 36.8 41.7 26.2 32.3 24.4 33.2 26.5 41.3 27.3 26.7 19.6 29.5 27.1

cloud (271) 47.9 33.9 40.9 25.4 38.3 27.0 58.7 44.4 53.1 21.6 48.1 28.8 53.7 37.5 52.5 29.1 46.1 26.7 58.1 43.8 61.4 32.2 65.0 33.9

endpoint (1,187) 42.8 29.5 34.8 24.5 32.8 27.8 59.8 36.6 51.0 24.4 48.7 43.0 57.3 32.5 42.0 30.9 40.1 37.0 66.3 37.8 35.9 29.6 42.5 22.9

network (43) 41.9 41.5 35.2 27.9 45.4 39.0 60.1 49.5 37.0 27.5 58.8 37.7 57.1 43.3 27.0 18.4 58.2 30.0 59.2 42.4 25.5 24.9 60.7 34.9

web (72) 41.6 34.8 27.5 22.1 32.0 28.2 57.0 43.3 39.8 20.6 38.6 28.8 50.1 37.9 31.9 14.5 36.6 27.3 56.6 41.2 28.9 17.4 43.8 34.8

Total (1,627) 43.4 30.9 35.8 24.8 34.0 28.1 59.1 38.5 50.2 24.2 48.2 39.7 55.9 33.6 42.6 29.3 41.2 34.3 63.5 38.7 39.3 29.0 46.4 25.7

Escalation, where GPT-4o fails entirely (0% precision and recall),
while RulePilot retains some detection capability. These lower scores
are primarily due to the subtle nature of malicious logs associated
with these tactics, where critical identifying fields do not explic-
itly appear in the rule descriptions. As a result, baseline models
struggle to generate effective detection rules, relying only on static
descriptions without real-time feedback.

In contrast, RulePilot demonstrates significantly better perfor-
mance due to its ability to autonomously call the Splunk API, re-
trieving real-time log feedback and refining its rules iteratively. This
self-reflective and API-driven approach enables RulePilot to detect
complex attack patterns that GPT-4o fails to capture, particularly in
scenarios where key indicators are not directly stated in the initial
rule descriptions.

Table 6: Execution-level success on the Splunk SIEM.
Tactic Precision (%) Recall (%)

RulePilot GPT-4o RulePilot GPT-4o

Reconnaissance 1.000 1.000 1.000 1.000

Initial Access 1.000 1.000 1.000 1.000

Execution 1.000 0.909 0.750 0.416

Persistence 1.000 1.000 0.818 0.714

Privilege Escalation 0.600 0.000 0.214 0.000

Defense Evasion 0.733 0.600 0.833 0.656

Credential Access 1.000 1.000 0.450 0.264

Discovery 0.667 0.167 0.444 0.100

Lateral Movement 1.000 1.000 0.667 0.667

Collection 1.000 1.000 1.000 1.000

Command and Control 1.000 1.000 1.000 1.000

Exfiltration 0.667 0.333 0.500 0.200

Impact 0.722 0.594 0.650 0.731

Failure Cases.We analyze that the failures often occur when the
key behavioral indicators are implicitly described in input descrip-
tions, rendering RulePilot and vanilla LLMs ineffective. For example,
we have checked the low recalls of 0.21 (RulePilot) and 0.0 (GPT-4o)
in our own tests of Privilege-Escalation rules, the input description
states “These calls are used to spawn MSBuild.exe in a suspended
state before injecting the decrypted SaintBot binary into it, modi-
fying the thread context to point to the malicious entry point and
resuming the process” without the behavioral indicators of process

Table 7: Efficiency and cost of RulePilot and baselines.

Model Prompt
Tokens

Output
Tokens

Money
Cost

Generation
Time

GPT-4o RulePilot 13,752 2489 $0.060 78s
Baseline 1,295 325 $0.012 12s

DeepSeek-V3 RulePilot 24,820 4,296 – 158s
Baseline 3,284 772 – 31s

LLaMA-3 RulePilot 22,107 2,985 – 119s
Baseline 1,734 474 – 26s

hollowing- a technique often used for privilege escalation or exe-
cution evasion. Under the same inputs, RulePilot can consistently
outperform the vanilla GPT-4o.

Answer to RQ1: RulePilot agent-based reasoning mecha-
nism enhances logical structure and syntax adherence in
terms of both similarity score and the execution success.

4.3.2 RQ2-Efficiency. We present the computational and economic
costs in Table 7, which are derived by running RulePilot and the
baseline approach on Splunk’s open-source datasets (detailed in
Table 4) and averaging the results across multiple test cases. We
find that RulePilot requires more tokens and computation time than
the baseline approach, mainly due to its stepwise reasoning and
iterative refinement. However, this also results in more complete
and logically structured rules, as seen in earlier evaluations, with
accessable latency.

Answer to RQ2: RulePilot generates well-structured rules
while maintaining accessible latency.

4.3.3 RQ3-Ablation Study. To further evaluate the effectiveness
of the key components in RulePilot, we conduct an ablation study
focusing on two critical elements: the IR and the combination of
CoT reasoning and Reflection (CoT-R). Since Reflection involves
iterative refinements that call CoT modules, these two components
are inherently linked and evaluated as CoT-R. To assess the indi-
vidual contributions, we introduce three experimental variants to
isolate the contribution of each component: one without IR, another
without CoT-R, and a version without both IR and CoT-R. The full
version of RulePilot incorporates both IR guidance and CoT-R. We
present the results of the ablation study in Figure 6. The overall
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trend reveals that removing either IR or CoT-R leads to a significant
decrease in rule generation, and removing both components causes
the most substantial drop across all metrics. Without CoT-R and IR,
the model struggles to handle complex conditions and multi-step
logic, leading to incomplete or logically inconsistent rules. This sug-
gests that CoT-R and IR play a critical role in enabling the model to
break down complex rule-generation tasks into manageable steps,
resulting in better logical consistency and structural coherence.

RulePilot
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Figure 6: Ablation study on the impact of IR and CoT-R.

Additionally, to determine the specific areas influenced by IR and
CoT-R, we conduct a semantic evaluation, with results shown in
Figure 7. We find that removing CoT-R causes the most significant
degradation in Logical Consistency (LC) and Condition Coverage
(CC). Conversely, removing IR primarily affects Syntax Correctness
(SC) and Readability & Maintainability (RM). The findings further
highlight the complementary roles of these components, where CoT-
R enhances logical structuring, and IR ensures syntactic correctness
and standardization.

Answer to RQ3: Both IR and CoT-R improve rule gen-
eration. CoT-R helps with logic and structuring, while IR
ensures correct syntax and readability. Removing either
one lowers performance, and removing both causes the
biggest drop.
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Figure 7: Ablation study for semantic-level evaluation be-
tween RulePilot and its variants.

4.4 RQ4-Compatibility
To evaluate the compatibility of RulePilot, we use the dataset con-
sisting of 30 SPL rules and their corresponding 30 KQL rules, which
serve as ground truth references. These rules are sourced from
real-world security applications within our industry collaborator,
having been collected, segmented, and anonymized to eliminate
sensitive information while preserving their syntactic and struc-
tural integrity. We further categorize the dataset into three types:
aggregation-based rules, which summarize event data; list-based
rules, which group multiple attributes; and join-based rules, which
are complex and involve multi-source data correlation to detect
cross-event security patterns. Each category contains 10 pairs of
SPL and KQL rules. To maintain consistency, we collected logs
oriented to Splunk, and evaluate the execution success on Splunk
based on cases of converting KQL to SPL. For each rule, we convert
the given KQL query into an SPL query using our model, execute it
in Splunk, and compare its results with the original SPL query from
the dataset. If both queries retrieve the same logs under identical
conditions, the conversion is considered successful.
Evaluation Results. We present the evaluation results in Table 8
for rule conversion, categorized by rule type. The aggregation-based
and list-based rules achieve perfect precision, recall and F1 (1.000),
indicating that these rule types are straightforward to convert due
to their simple structure and direct function mappings between SPL
and KQL. Since they primarily involve statistical summarization or
attribute grouping, the model can accurately translate their logic
without ambiguity. However, join-based rules exhibit slightly lower
performance. These rules involve multi-source data correlation,
requiring careful field mapping and handling of log relationships
across different event sources. The drop in performance is primar-
ily due to boundary cases where certain event correlation logic
was not fully preserved, leading to minor mismatches in retrieved
log sets. Despite this, the results demonstrate that the conversion
model is highly effective across different rule types, particularly for
structured and statistical queries.

Table 8: Evaluation of rule conversion from KQL to SPL.
Rule Type Precision (↑) Recall (↑) F1 (↑)
Aggregation-Based Rules 1.000 1.000 1.000
List-Based Rules 1.000 1.000 1.000
Join-Based Rules 0.926 0.913 0.919

This experiment demonstrates the compatibility and generaliza-
tion capability of RulePilot for cross-SIEM rule conversion. While
this experiment focuses on KQL-to-SPL translation due to log avail-
ability constraints (i.e., we collected logs oriented to Splunk SIEMs
for execution success), RulePilot is inherently designed to support
flexible and bidirectional conversions across multiple SIEM plat-
forms. SPL2KQL5 is one of the publicly available rule conversion
tools used in industry. Developed by Microsoft, it supports one-way
translation from Splunk SPL to Microsoft Sentinel’s KQL. SPL2KQL
is primarily designed to ingest external detection rules into the
Microsoft ecosystem and is based on traditional rule rewriting
techniques such as keyword mapping, syntax tree parsing, and
regex-based transformation. However, it does not support reverse
5https://azure.github.io/spl2kql/dist/index.html
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conversion or semantic adaptation for other platforms. In contrast,
RulePilot leverages LLM-based semantic understanding and an in-
termediate representation (IR) layer to support bidirectional and
context-aware rule conversion, such as KQL-to-SPL, SPL-to-KQL,
or even translation between other vendor formats. This flexibility
makes RulePilot applicable to a wider range of deployment scenar-
ios, including hybrid or transitioning security infrastructures.

To provide a more intuitive comparison when converting SPL
to KQL, we select one piece of SPL from the official SPL2KQL
demo repository and convert the SPL to KQL using both SPL2KQL
and RulePilot. As shown in Figure 8, RulePilot can generate a se-
mantically faithful KQL rule by aligning query operators (e.g.,
contains , project-rename ) and adapting field references such
as TimeGenerated , reflecting a deep understanding of both source
and target semantics. In contrast, SPL2KQL applies literal keyword
mappings (e.g., TargetImage = lsass.exe ) and syntactic trans-
formations (e.g., rename ) without semantic reinterpretation, re-
sulting in inaccurate or even invalid KQL logic in practical use.

Sysmon
| where EventID == 10
| where TargetImage contains "lsass.exe"
| where CallTrace contains "dbgcore.dll" or CallTrace contains "dbghelp.dll"
| summarize count(), firstTime = min(TimeGenerated), lastTime = 
max(TimeGenerated) by Computer, TargetImage, TargetProcessId, SourceImage, 
SourceProcessId
| project-rename dest = Computer

sysmon EventCode = 10 TargetImage = lsass.exe CallTrace = dbgcore.dll OR 
CallTrace = dbghelp.dll 
| stats count min (_time) as firstTime max (_time) as lastTime by Computer, 
TargetImage , TargetProcessId , SourceImage , SourceProcessId 
| rename Computer as dest

KQL Rule converted by RulePilot:

KQL Rule converted by SPL2KQL:

`sysmon` EventCode=10 
TargetImage=*lsass.exe 
CallTrace=*dbgcore.dll* 
OR 
CallTrace=*dbghelp.dll* 
| stats count min(_time) 
as firstTime max(_time) 
as lastTime by Computer, 
TargetImage, 
TargetProcessId, 
SourceImage, 
SourceProcessId 
| rename Computer as 
dest 

Original SPL Rule
(Sample1 in SPL2KQL)

Figure 8: Comparison between the KQL rules converted from
SPL via SPL2KQL and RulePilot.

Answer to RQ4: RulePilot effectively supports rule con-
version between Splunk SPL to Microsoft KQL, supporting
the abilities of translating multiple types of rules across
SIEM systems.

4.5 Case Study
We perform a case study to compare the statistical labor reduction
using RulePilot, assessing how users of different security exper-
tise levels perform in rule authoring with and without its support.
We recruit general users without any background of SIEM en-
vironments and the junior analysts with beginner experience
with SIEM exposure, under the premise that RulePilot incorporates
expert-level expertise. We evaluate the time taken (Time used to
produce a complete rule), final rule output, syntax validity (whether
the rule passes vendor-side syntax checks, e.g., Splunk), and logical
alignment (whether the rule logic matches the input as judged by
an expert). The details are shown in our user study in 6.

The comparison study show that RulePilot can significantly im-
prove the manul rule generation process for both both general users
and junior analysts, reducing the time required and improving rule
quality in terms of syntactic validity and logical alignment with
expert-level standards.
6https://sites.google.com/view/rulepilot/user-study.

5 Related Works
Constraint Generation. Recent studies have utilized LLMs to gen-
erate constraint logic rules in various domains [25, 26]. For instance,
LLMs have been applied to formal verification tasks in smart con-
tracts [24], and to the automated extraction of generic-signature
detection rule candidates from textual and visual open-source cyber
threat intelligence data [36]. Additionally, LLMs have been explored
for log-based anomaly detection [29], demonstrating the potential
of LLMs in leveraging pre-trained knowledge to extract structured
insights from large-scale log data and assist in constraint genera-
tion. However, challenges persist in modeling and capturing the
intricate structures of SIEM rules, hindering the direct application
of these methods to generate executable security rules.
Log Analysis. Previous works largely employ LLMs to automate
log analysis [23], [29], including log parsing and anomaly detection.
For instance, LLM-based approaches achieve high precision in log
template extraction [50] and automatic logging statement genera-
tion [49], significantly reducing manual effort. These approaches
may provide valuable foundations for our work by improving log
parsing and structured analysis. Unlike prior studies that focus on
general log processing, our work builds upon existing SIEM rules
and leverages LLMs to analyze logs and detect anomalies.

6 Discussion
Automation Level. RulePilot achieves a half-automated approach
to SIEM-specific rule generation by embedding the logic and exper-
tise of senior analysts. It simulates their decision-making process,
including pipeline breakdown, formal template structuring, and
iterative refinement. However, in practice, certain field validations
and the final results require human oversights, which junior experts
can handle to ensure functional-correctness and reliability.
Future Work. RulePilot supports query-based SIEM systems (i.e.,
Splunk SPL and Microsoft KQL), and can tailor to KQL generation
by handling syntax differences in keyword structures and field ref-
erencing conventions. For more SIEMs, we believe that it needs
a new Intermediate Representation design. RulePilot currently ex-
hibits a gapwhen applied to non-SIEM environments, which require
additional log ingestion and custom detection execution engines.
We consider the extension to KQL, other SIEM, and non-SIEM en-
vironments as future works. Additionally, we aim to streamline
RulePilot by eliminating redundant reasoning steps and improving
processing speed without compromising detection quality.

7 Conclusion
In this paper, we propose RulePilot, an LLM-based agent system de-
signed to automate rule creation and conversion for SIEM detection.
By leveraging the novel SIEM-specific intermediate representation,
RulePilot abstracts the complexity of rule configurations into a struc-
tured and standardized format. We conduct a comprehensive evalu-
ation of RulePilot, demonstrating that it can produce high-fidelity,
executable SIEM-specific rules. Our case study with industry collab-
orators shows that RulePilot significantly assists general users and
junior analysts by reducing rule generation time and improving
rule quality, allowing them to create detection logic using natural
language instead of manually adhering to strict grammar rules.

https://sites.google.com/view/rulepilot/user-study
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